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Two-Level Supply Chain

• The buyer randomly receives demand from its customers and

places orders of size Q from the supplier when its inventory level

drops below reorder point R.

Supplier Buyer

Inventory

Order
Demand
(Random)

• The supplier receives these orders and ships inventory to the

buyer. The supplier orders a quantity from its supplier in integer

multiples N of Q.
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Two-Level Supply Chain

• Buyer cost function:

TCb(Q, R, V ) = (Kb−V ) · Y
Q

+hb ·(0.5Q+R−E(X))+π ·SR(R) · Y
Q

�→ Terms are annual ordering, holding, and stockout costs; V

is a per order rebate coordination incentive (Cobb and Johnson
2013).

Expected shortage per cycle: SR(R) =
∫ ∞
R

(x − R) · fX(x) dx

�→ fX is the probability density function (PDF) for lead time
demand.
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Two-Level Supply Chain

• Supplier cost function:

TCs(Q, N, V ) =
(

Ks

N
+ V

)
· Y

Q
+ hs(N − 1)0.5Q

�→ N = integer multiple of buyer’s order size Q

�→
(

Ks
N + V

)
· Y

Q = annual ordering costs

�→ hs(N − 1)0.5Q = annual holding costs
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Lead Time Demand

• LTD follows a compound probability distribution. Suppose L

is a random variable for LT and D represents random DPUT.

LTD is a random variable X determined as

X = D1 + D2 + D3 + · · · + Di + · · ·+ DL .

Therefore, X is a sum of random, independent and identically

distributed (i.i.d.) instances of demand. The mean (μX) and

variance (σ2
X) of X can be calculated as

E(X) = E(L)·E(D) and V ar(X) = E(L)·V ar(D)+[E(D)]2·V ar(L) .
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Example (Eppen & Martin (1988))

• Daily demand is normally distributed: Di ∼ N(40,30).

• Lead time (in days) is discrete: ΩL = {7,12,14,15,16,25}
each with probability 1/6 (E(L) = 14.8; V ar(L) = 29.1).

• In this case, E(X) = μX = 14.8 · 40 ≈ 593 and

V ar(X) = σ2
X = E(L) · V ar(D) + [E(D)]2 · V ar(L) ≈ 47000

• All previous methods for setting (Q∗, R∗) and N∗ assume LTD

is normal; Eppen and Martin (1988) demonstrate calculation of

a service level in a single-firm context.
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Example (Eppen & Martin (1988))

• The actual LTD distribution, fX, is a mixture of normal distri-

butions.
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N(593,47000) Distribution
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Two-Level Supply Chain

• Research issues to be addressed:

1. Analytical solutions for Q∗, R∗, and N∗ in the two-level supply
chain problem assume (and require) normality.

2. Methods for modeling LTD distributions often make unreal-
istic distributional assumptions.

3. In practice, the actual LT and DPUT distributions are likely
unknown – the solution here uses empirical data.

�→ For the example, suppose a modest amount of historical data
is available on daily demand and lead time on previous orders.
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Example (Eppen & Martin (1988))

�→ 500 observations of daily demand with d = 39.66 and s2d =
30.64.

• This is a random sample from the N(40,30) distribution.
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Example (Eppen & Martin (1988))

�→ 50 observations of lead time with � = 10.8 and s2� = 12.52.

• This is a random sample from the discrete LT distribution.
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Constructing the LTD Distribution

�→ 500 observations of daily demand with d = 39.66 and s2d =
30.64

• These are assumed to be i.i.d. observations.
11



Constructing the LTD Distribution

�→ The most likely empirical LT value is 7 days

• Sum daily demand over each 7-day period in the dataset
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Constructing the LTD Distribution

�→ The lead time demand dataset given LT of 7 days with N7 =
71

• Fit a mixture of polynomials (MOP) distribution (Shenoy 2012)
to this data. This distribution will be the approximate LTD
distribution conditional on L = 7, or f̂X|L=7.

• Similar distributions, f̂X|L=�, will be constructed for � = 12,14,

15,16,25.
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Mixture of Polynomials (MOP)

�→ The approximate LTD distribution conditional on L = 7, or
f̂X|L=7

f̂X|L=7(x) =

{
−3.3726 + 0.0241x − 0.000043x2 236 ≤ x < 271
0.7102− 0.0061x + 0.000013x2 271 ≤ x ≤ 306 .

• The MOP has n = 2 pieces and is degree d = 2 (or is third
order).

�→ The MOP was constructed using a linear combination of B-
spline functions (Lopez-Cruz et al. 2012).
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Mixture of Polynomials (MOP)

�→ f̂X|L=7 is a mixture of four B-spline functions
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• The B-splines are defined recursively based on the split points
in the domain. Mixing coefficients are determined via maximum
likelihood (Zong 2006).
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Mixture of Polynomials (MOP)

�→ The approximate LTD distribution conditional on L = 7, or
f̂X|L=7 overlaid on the N(7 · 40,7 · 30) distribution.
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• Recall: the MOP is not fit to the normal PDF, but rather a
small sample of data generated from the normal PDF.
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Mixture of Polynomials (MOP)

• Selection of d and n for B-spline estimation is a trade-off be-
tween accuracy and complexity; higher values can also lead to
over-fitting.

�→ Select d and n to maximize the Bayesian information criterion
(BIC):

BIC
(
f̂X|L=� (x) ,D

)
= L

(
D|f̂X|L=� (x)

)
− ((m − 1) logN)/2 .

The second term is a penalty for adding parameters to the model
(L is the likelihood of the data given the model).

�→ In practice, once we settle on d and n, we may not go through
this step (n = 2 & d = 3 maximized BIC in this example).
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Mixture of Polynomials (MOP)

• What does “over-fitting”look like? Left: n = 2 & d = 3; Right:
n = 3 & d = 5.
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• Left: L
(
D|f̂L=7

)
= −284.0 & BIC: −290.4 ; Right: L

(
D|f̂L=7

)
= −280.9 & BIC: −293.7 (Bonus: model on left entails less
computational complexity).
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Mixture of Polynomials (MOP)

�→ Fitting process repeated for � = 12,14,15,16,25.
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The approximate LTD distribution:

f̂X(x) =
6∑

�(k)=1

P
(
L = �(k)

)
· f̂

X|L=�(k)
(x)
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Mixture of Polynomials (MOP)
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�→ f̂X is overlaid on the mixture of normal distribution fX (the
“actual” distribution), but f̂X was not generated using knowl-
edge of the underlying distribution.
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Mixture of Polynomials (MOP)
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�→ f̂X is relatively compact – it has 15 pieces and is a 2nd degree

polynomial.
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Mixture of Polynomials (MOP)
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�→ How is this useful?

Recall: Expected shortage per cycle: ŜR(R) =
∫ Xmax

R
(x−R)·f̂X(x) dx

�→ ŜR can be calculated in closed-form (here a 10-piece, 5th
degree MOP), so T̂Cb is closed-form.
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Finding Optimal Policies

Test case (from CH): Kb = 50, Ks = 150, hb = 5, hs = 12.5,
π = 6, 250 working days so Y = 250 ∗ 40 = 10000.

• Buyer would like to operate in a decentralized supply chain

with V = 0 and set: (Q∗
d, R

∗
d) =

ArgMin
(Q, R)

T̂Cb (Q, R,0)

�→ Solution: Q∗
d = 455, R∗

d = 1019, TCd
b = T̂Cb(Q

∗
d, R

∗
d,0) =

4406.4

• Given buyer’s (Q∗
d, R

∗
d), supplier finds N∗

d = 1 to minimize its
costs.

�→ TCd
s = TCs(Q∗

d, N
∗
d ,0) = 3298

�→ TCd = TCd
b + TCd

s = 4406.4 + 3298 = 7704.4
23



Finding Optimal Policies

• Supplier would like to operate in a centralized supply chain

�→ Define: TCc(Q, R, N) = TCb(Q, R,0) + TCs(Q, N,0)

(Q∗
c, R

∗
c, N

∗
c ) =

ArgMin
(Q, R, N)

TCc (Q, R,N)

�→ Solution: Q∗
c = 909, R∗

c = 1004, N∗
c = 1

�→ TCc
b = 4955.9, TCc

s = 1649.9, TCc = 6605.8

�→ Coordination can save: TC+ = TCd−TCc = 7704.4−6605.8 =

1098.5
24



Observations

• Buyer prefers a decentralized supply chain: TCd
b < TCc

b

• Supplier prefers a centralized supply chain: TCd
s > TCc

s

�→ Centralized policy requires buyer to raise order quantity by
Q∗

c − Q∗
d = 454 and can save TC+ = 1098.5.

�→ Centralized no. of orders: Y/Q∗
c ≈ 11

�→ Seller offers buyer rebate each cycle:

V = 0.5 · TC+

Y/Q∗
c
≈ 0.5 · 1098.5

11
≈ 50

�→ Parties can agree on other split of TC+
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Alternate Solution (Chaharsooghi and Heydari
(2010) — CH)

• Approximate the density function fX for X using a normal
distribution using sample means and variances.

• For this example, E(X) = μX = 417.2 and

V ar(X) = σ2
X = 19881

• Define: k = (R − μX)/σX, so that

S(R) = Sk(k) · σX = σX ·
∫ ∞
k

(z − k) · 1√
2π

e−z2/2 dz .

• CH solve analytically for a partial solution for (Q, k,N) stated
in terms of the cost parameters and normal CDF.
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Alternatives – MOP and CH Solution

�→ We should measure the effectiveness of the models by their
“value in use”
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• Consider two models: 1) MOP model; and 2) CH model.
We will compare the solutions obtained from the two models by
simulating from the (unknown) underlying “actual” normal daily
demand and discrete LT distributions (the “actual” model).
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Evaluating the Models

Buyer CPU
Decentralized Q∗ R∗ N∗ TC % Dec. (sec)
MOP (mixture dist.) 455 1019 1 4455 2.0% 1.77
CH (normal) 558 999 1 4531 0% 0.06

SC CPU
Coordinated Q∗ R∗ N∗ TC % Dec. (sec)
MOP (mixture dist.) 909 1004 1 6628 3.7% 2.16
CH (normal) 1012 926 1 6872 0% 0.09

• The costs are directly comparable — calculated by inserting the

MOP and CH solutions into the simulation model and running

100,000 trials.
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Air Force Example – F-15/16 Power Supply

• 1827 observations of daily demand (2008–2012) with d = 0.63

and s2d = 1.09.

�→ Mode = 0 (1158 observations); Maximum = 8.

• 100 randomly sampled requisitions: � = 10.4 and s2� = 162.8

(Min=1; Max=73).

• Annual unit holding cost: 15%; Unit Price: $224,392;

hb = $33,658; Kb = $5.20.

• Annual unit shortage cost (π) – if one unit short one officer at

captain pay is 50% productive, π=25000.
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Air Force Example

• LTD Distribution — MOP model and a normal approximation
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• Use this distribution to find optimal Q∗, R∗, and N∗ policies.
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Air Force Example

• Comparison of solutions with MOP and normal approximations

• Buyer costs calculated by implementing the policy with the

actual demand data for 2008–2012 (before considering coordi-

nation incentives) and lead times drawn randomly for each order

from the empirical distribution.
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Sensitivity to Shortage Cost Parameter
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Conclusions

• Mixture distributions can be used to model the distribution for

demand during lead time using strictly empirical data with no

limits on the underlying distribution.

• By using MOP distributions estimated from B-spline functions,

we can perform integrations required to determine optimal order

quantities, reorder points, and service levels in closed-form.

• Next steps: creating models under different sets of assump-

tions, e.g. a vendor-managed inventory model; improving the

efficiency of the solution algorithm.
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